Low Penetration Rate Cooperative V2X Traffic Surveillance System
Jérôme Härri
Outline

- COLOMBO proposes to develop advanced traffic light control based on local and distributed floating car data (D-FCD)
 - obtained directly from vehicles

- D-FCD is provided by COLOMBO’s traffic surveillance systems
 - Assumes low penetration of cooperative V2X systems
 - Fully distributed approaches

- Classify vehicles in three classes as function of traffic sensing capabilities:
 - Class A – vehicles not participating to traffic surveillance
 - Class B – vehicles equipped with sensors but not C2X
 - Class C – vehicles equipped with C2X technologies

- Develop Traffic monitoring system from data gathering, fusion and dissemination of traffic data obtained from class B and C vehicles, assisted by infrastructure nodes
Low Penetration Traffic Surveillance

- Low Penetration Rate Cooperative V2X Traffic Surveillance
 - Low C2X Penetration - < 3% C2X technology
 - Multiple types of GPS devices
 - C2X, smartphones
 - Rely on WiFi-Direct on smartphones
 - Drivers or pedestrian on sidewalk
 - Rely on Bluetooth devices on vehicular sensors

- Objective:
 - Traffic Volumes / Traffic Dynamics (speed) in given zones

- Approaches followed in COLOMBO WP1
 - Clustering –
 - Vehicles cluster and let a cluster-head estimate the cluster dynamics
 - Data Fusion from heterogeneous traffic data –
 - C2X data is fused with Smartphones and sensor data
 - C2X Message Propagation –
 - Vehicles send messages and estimate the density & speed from its propagation rate
Virtual Sensor Approach for Cooperative Traffic Surveillance

- Virtual Sensors represent a zone where the traffic light needs traffic volumes
 - Virtual Sensors only have a ‘virtual’ existence from an artificial zone defining their coverage

- V2X vehicles (class C) in each zone will exchange traffic data to consolidate traffic volumes

- Consolidated volumes are transmitted to the RSU (direct, multi-hop)
 - Dissemination is transparent to RSU

- Low V2X penetration is compensated by Smartphones held by drivers and pedestrians in same zones
Traffic Surveillance for Traffic Light Control

- The COLOMBO Traffic Light Control (TLC) requires dynamic and fresh traffic states
 - Arriving flows
 - Leaving flows

- Measuring Zones –
 - \(Z_x \) – measured zones \([p_{x-1} - p_x], [d_{x-1} ; d_x] \)
 - \(d_x \) – measuring distances before TLC
 - \(p_x \) – measuring distances after TLC

- Traffic Dynamics –
 - Average speed in \(Z_x \)
 - Average Density of cars in \(Z_x \)

- Data Quality –
 - **Precision**: how close is data from reality?
 - **Freshness**: how often is data provided?
Traffic state estimate through traffic fundamental diagrams

- Traffic flows follow three basic fundamental diagrams:
 - Traditionally used to validate models and traffic
 - Can be used to extract one component out of 1-2 two others
 - Given a known street capacity (# lanes)
 - Speed can be extracted from traffic density
 - Flow (out) can be extracted from traffic density
 - One challenge:
 - traffic density…
Traffic state estimate through data dissemination

- Related objective:
 - Given vehicular density
 - What is the multi-hop C2X dissemination delay?

- In COLOMBO: reverting the question
 - Given the **C2X dissemination delay**, what is the **average density**?

- Tradeoff:
 - **Carry**: dissemination = vehicular speed
 - **Relay**: dissemination immediate = Multi-hop percolation exists
 - Laws of Physics: at least 1 vehicle every transmit range
 - Density of vehicle may be estimated!
 - **Hybrid**: carry takes lead over relay
Traffic state estimate through local neighborhood information

- **Reactive Approach** – **Distributed Auction**
 - Each node request (broadcast) to become a cluster leader
 - The node with the maximum request announces it becomes leader
 - Any node receiving this message joins its group

- **Proactive Approach**: **Node Mapping Protocol (NMP)**
 - Periodically send beacons with information from neighbors (id, position, speed, direction, and number of known nodes)
 - The node with the larger neighbor set becomes leader

- **Cluster Leader**:
 - Gathers the number of neighbors contained in the measured area
 - Fuse and consolidate from missed data
 - Transmit it to the traffic light
Traffic state estimate - evaluations

- 100% Car type C: Two-way linear scenario, 100% penetration

- Traffic Density:
 - Black: Oracle
 - Red: Proactive

- Observation:
 - ~98% precision in #detected vehicles in each direction

- Packet Losses:
 - Related to channel congestion
 - Hinders quality of fusion protocol
 - Proactive (red) creates less overall (and less critical) collisions than reactive (green)

Traffic state estimate through local neighborhood information

- **Reverse Dissemination:**
 - Car entering a zone: transmit a packet
 - Last car before leaving the zone: receives the packet

- **Mapping Function f(x):**
 - Given dissemination time
 - Provides a respective density
 - Mapping function is critical to obtain:
 - Linear function in free-flow
 - Exponential in congested mode
Summary

- COLOMBO’s cooperative & distributed traffic surveillance system has been presented
 - Tailored to traffic light control required data:
 - traffic density / traffic speed – per ‘virtual’ sensing zone (virtual induction loops)
 - Precise & fresh data (as close as possible to reality)

- Two approaches followed:
 - **Topology-based**: cluster-heads extracts neighborhood visibility (density)
 - **Dissemination-based**: relationship between dissemination time and density

- Some initial results have been presented
 - Data quality close to benchmark (simulated mobility with SUMO)

More information is available at
http://colombo-fp7.eu/

Thank you!