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1 Introduction
Automatic algorithm configuration techniques have recently been developed in the area of op-
timization and stochastic local search algorithms [1, 10, 25, 16, 24, 20]. The goal of automatic
algorithm configuration techniques is to determine best possible settings of parameters of opti-
mization algorithms during a training phase. These parameter settings are then applied in a suc-
cessive deployment phase, where the algorithms solve the problem under concern. Automatic
algorithm configuration techniques themselves are algorithms that can be used to effectively
search sometimes very large parameter spaces. The term “automatic” here actually refers to
the fact that an algorithm is configured on the computer by using another algorithm, which is
commonly called configurator or tuner, and stands in contrast to the usual “manual” treatment
of the algorithm configuration problem by algorithm designers.

Automatic algorithm configuration tools will have and in part already has a strong impact
on the way algorithms are designed. This is because a parameter in automatic algorithm config-
uration can also decide, for example, among different types of search strategies. Such decisions
are associated rather to algorithm design than to simply calibrating an already fully designed
or instantiated algorithm. Hence, the advent of automatic algorithm configuration tools has
a major implication not only for the practice of fine-tuning algorithms, but it opens a fully
new approach to algorithm design, which by some authors recently has been paraphrased as
programming by optimization [20].

1.1 Motivation
The main motivation of work-package WP3, of which deliverable D3.1 is a first step, is to
transfer the benefits automatic algorithm configuration techniques offer for the design and de-
velopment process of optimization algorithms [20] to the design and calibration tasks that arise
in the COLOMBO project, in general, and to the design and calibration tasks for novel traffic
light control algorithms, in particular.

In fact, there are many similarities between modern optimization algorithms and traffic light
control methods. Both can be seen as algorithms whose design requires a number of important
decisions since they are composed of individual algorithmic components, and the search or
control strategies these components use depend on the particular setting of specific, numerical
parameters. The performance of either algorithms or traffic light control algorithms can be rated
based on the cost or the benefits of the solutions they return. While in optimization algorithms
the quality of the results generated is evaluated by cost or profit measures that are based on the
problem that is being solved, in traffic light control the evaluation is typically done based on
metrics that rate the quality of the traffic flow, waiting times, the emission caused etc. measured
over a specific time period [11]. Hence, it appears that the two areas have clear links and that
it makes sense to transfer new techniques that have been proven successful in one area to the
other area.

The COLOMBO project and the associated work-package WP3 are the first attempt we are
aware of to transfer automatic algorithm configuration techniques, which were shown to be suc-
cessful for optimization problems, to the configuration and fine-tuning of traffic light control
algorithms. Besides the development of high-performing control algorithms, there are a number
of additional side-effects the usage of automatic algorithm configuration techniques engenders.
The first is to reduce the time and human intervention it requires to actually design, develop
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and experiment the possible design choices for the control algorithm under development. The
second is to allow a faster fine-tuning of the traffic light control algorithms to the traffic lights
in which the control algorithms are deployed. This fine-tuning can be done in off-line com-
puter experiments where the traffic light control algorithms are fine-tuned in combination with
simulation tools. This should make easier the deployment of practical solutions.

1.2 Objectives
The task 3.1 of WP3 focuses on the development (carried on by the ULB partner of the
COLOMBO project) of a tool kit for the automatic configuration and tuning of parameterized
(black-box) algorithms.1 The objectives for the development of this tool kit were the following.

• Review the current state-of-the-art in automatic algorithm configuration to define a can-
didate set of the most promising algorithm configuration tools.

• Develop a prototype tool kit that integrates the most promising, available candidate algo-
rithm configuration tools.

• Design the tool kit so that (i) it eases the usage of different configuration methods by
providing one common interface to them; (ii) it is flexible to integrate new tools, (iii) it
is ready to support configuration and tuning tasks arising in the remainder of the project,
for example, in WP2 on Self-Organizing Traffic-Light Control System for low Penetration
Rates.

1.3 Structure
This deliverable is structured as follows. Section 2 first gives a more detailed description of the
background on automatic algorithm configuration and states the problem in more formal terms.
Next, we present the three automatic algorithm configuration tools that we have included into
the prototype of the tool kit we have developed. These are the most comprehensive tools that
are available for the offline configuration tasks as they are on the horizon of the COLOMBO
project. We then give a concise overview of other potential candidates that we considered
and we shortly explain why they were not integrated into the prototype candidate tool. In
Section 3, we describe the prototype tool kit. We first summarize its purpose and structure, the
embedded algorithms, and then we describe the interfaces it uses to the automatic algorithm
configuration methods, and the interfaces to target algorithms/controls to be configured. As a
final contribution of Section 3, we sketch some computational results comparing the currently
included tools. In Section 4, we summarize the contributions of deliverable D3.1.

1More specifically, in the description of work of the COLOMBO project, the task 3.1 to which this deliverable
relates was formulated as follows. This task focuses on the development (carried on by ULB) of a tool kit for the
automatic configuration and tuning of parameterized (black-box) algorithms. Of particular interest are situations,
in which the evaluation of algorithms or systems whose behaviour is stochastic. This is often the case in traffic
scenarios and in algorithms applied to tackle complex systems. The tool kit will be the first to comprise a range of
existing configuration techniques; it will be instrumental to support configuration tasks arising in work package
WP2.
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2 Automatic Algorithm Configuration
Automatic algorithm configuration methods have become important tools to support algo-
rithm designers and developers in the development of high-performing optimization algorithms
[8, 16, 20]. In fact, many state-of-the-art algorithms for tackling computationally hard prob-
lems have a number of parameters that influence their search behavior. These include exact
algorithms such as branch-and-bound algorithms, algorithm packages for integer programming
(e.g. CPLEX), and also approximate algorithms such as stochastic local search (SLS) algo-
rithms. The parameters include numerical parameters such as the tabu tenure in tabu search
algorithms or the pheromone evaporation rate in ant colony optimization. Additionally, many
algorithms can be seen as being composed of a set of specific components that are often inter-
changeable. Examples are different branching strategies in branch-and-bound algorithms, dif-
ferent types of crossover operators in evolutionary algorithms, or different types of local search
algorithms in iterated local search. These interchangeable components are best described as
categorical parameters of the underlying search method.

2.1 The Automatic Algorithm Configuration Problem
Research in optimization has shown that the performance of parameterized algorithms depends
strongly on the particular values of the parameters and the choice of an appropriate setting of
these parameters is itself a difficult optimization problem [9, 8, 1]. Given that typically not
only the setting of numerical parameters but also that of categorical parameters needs to be
determined, this problem is called also the algorithm configuration problem.

More in general, in automatic algorithm configuration several types of parameters may
occur. As mentioned, categorical parameters typically refer to alternative algorithm design
choices that cannot necessarily be ordered. Examples are alternative branching rules in tree
search algorithms or different types of ant colony optimization (ACO) algorithms [14], where
ACO is a specific class of swarm intelligence algorithms.2 Other variables may refer to differ-
ent algorithmic choices but the alternatives may be ordered. An example is the type of local
search algorithm to be used in a hybrid algorithm, where the local search algorithms may be
ordered according to the size of the neighborhood they explore. Finally, other variables may be
numerical, usually either being integer values such as the number of ants in ACO algorithms or
real-valued parameters such as the pheromone evaporation. General automatic algorithm con-
figuration tools must be able to deal with all these types of variables since they may all arise
simultaneously in algorithm configuration tasks.

The object that is being optimized in (automatic) algorithm configuration methods is itself
an algorithm as implemented in a piece of software. This is different from “usual” optimization
tasks where the object to be tackled is a specific problem that is to be solved (such as finding
a shortest path) but not an algorithm that is used to solve a problem. In our context, the term
automatic simply says that the configuration problem of the algorithm, that is, the problem of
how to set all its free parameters for tackling a specific class of problems in a best possible
way, is itself solved again by an algorithm on a computer. Here, automatic contrasts with the
typical manual configuration that has traditionally been applied for designing and implementing
(optimization) algorithms.

2ACO algorithms are used for showing some exemplary results later, so the reader will know further details
about these algorithms there.
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It is noteworthy that the automatic configuration problem itself can be seen as an opti-
mization problem. In fact, it can be described as an optimization problem that (i) has a mix
of different variables (typically, categorical variables, ordinal variables, integer variables and
real-valued variables) each with its specific domain (that is, set of possible values that may be
assigned to these variables); (ii) it is highly non-linear since there are interactions between the
different parameters; (iii) it is stochastic due to the possible stochasticity of the algorithms and
also because the particular instance being tackled can be seen as having been drawn according
to some underlying, possibly unknown probability distribution.

As objectives that are used to evaluate the performance of optimization algorithms, two
are the most widely used ones. The first is the quality of the solutions generated by the algo-
rithm after specific computation times; the second is the time it takes for the algorithm to reach
specific bounds on the solution quality, for example, the optimal solution for a specific prob-
lem instance. Given that there are no standard methods available for tackling such problems,
in the recent years several heuristic methods have been proposed as algorithms for actually
solving this class of (very complex) optimization problems. To make the distinction between
algorithms that tackle the algorithm configuration problem and those that tackle specific op-
timization problems clear, we call the former configurator and the latter optimizer in what
follows.

Formal Problem Statement

The automatic algorithm configuration problem has been formalized [8]. The problem can be
stated formally as a 7-tuple 〈Θ, I, PI , PC , t, C, T 〉, where

• Θ is a possibly infinite set of candidate configurations.

• I is the possibly infinite set of instances.

• PI is a probability measure over the set I .

• t : I → < is a function associating to every instance the computation time that is allo-
cated to it.

• c(θ, i, t(i)) is a random variable representing the cost measure of a configuration θ ∈ Θ
on instance i ∈ I when run for computation time t(i).3

• C ⊂ < is the range of c, that is, the range of values for the cost of a configuration θ ∈ Θ
on an instance i ∈ I .

• PC is a probability measure over the set C; PC(c|θ, i) indicates the probability that c is
the cost of running configuration θ on instance i.

• C(θ) = C(θ|Θ, I, PI , PC , t) is the criterion that needs to be optimized with respect to θ.
In the most general case, it measures in some sense the desirability of θ.

• T is the total amount of time available for experimenting with the given candidate con-
figurations on the available instances before delivering the selected configuration.

3In the following we often will not mention the dependence of the cost measure on t(i), to ease notation.
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Based on these concepts, the goal of configuring a parameterized algorithm is to find a config-
uration θ̄ such that:

θ̄ = arg min
θ∈Θ
C(θ). (1)

Often, for C the expected value of the cost measure c is considered:

C(θ) = EI,C [c] =

∫
c dPC(c|θ, i) dPI(i), (2)

where the expectation is considered with respect to PI and PC , and the integration is taken in
the Lebesgue sense. However, other options for defining the cost measure to be minimized
such as the median cost of a configuration or a percentile of the cost distribution are easily
conceivable.

The measures PI and PC are usually not explicitly available and the analytical solution of
the integrals in Eq. 2 is not possible. Hence, it is necessary to estimate the expected cost in a
Monte Carlo fashion on the basis of running the particular algorithm configuration on a training
set of instances.

The cost measure c in Eq. 2 can be defined in various ways. For example, the cost of a
configuration θ on an instance i can be measured by the objective function value of the best so-
lution found in a given computation time t(i). In such a case, the task is to configure algorithms
for an optimization problem and the goal is to optimize the solution quality reached within a
given computation time. In the case of decision problems, the goal is rather to choose param-
eter settings such that the computation time to arrive at a decision is minimized. In this case,
the cost measure would be the computation time taken by an algorithm configuration to decide
an instance i. Since arriving at a decision may take infeasibly long computation times, the role
played by the function t is to give a maximum computation time budged for the execution of
the algorithm configuration. If after a cutoff time of t(i) the algorithm has not finished, the
cost measure may use some penalty value. This is done, e.g., in [25, 26]. Finally, let us remark
that the definition of the algorithm configuration problem applies not only to the configuration
of stochastic algorithms, but it extends also to deterministic, parameterized algorithm: in this
case, c(θ, i, t(i)) is not anymore a random variable but a deterministic function; however, the
stochasticity then stems from the randomness due to the instance distribution PI .

Towards Automatic Algorithm Configuration

As said, configurators are algorithms that tackle the automatic algorithm configuration prob-
lem as defined above by using a Monte-Carlo estimation of the cost of configurations that
are generated. Configurators typically employ special-purpose search algorithms that can deal
with one or several of the types of variables that can arise in the configuration of optimiza-
tion algorithms. An important element in automatic algorithm configuration is that the goal
of the configuration task is to generate algorithm configurations that generalize to yet unseen
instances of the problem that need to be solved at deployment time. Hence, the application of
automatic algorithm configuration methods distinguishes usually between two distinct phases.
In a first training phase, a set of training instances is used to evaluate candidate configurations
that are generated during the search process of the configurator. In a second deployment phase,
the best found optimizer configuration is deployed to actually tackle the problem instances that
arise in practice. Figure 1 summarizes the relationship between configurator, optimizer, and
training instances during the training phase of an automatic algorithm configuration tool; the
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Figure 1: Summary of the relationship between configurator, optimizer, and training instances
during the training phase of an automatic algorithm configuration tool.

configurator generates candidate algorithm configurations that are evaluated by running the op-
timizer on training instances. The cost estimates of the candidate configurations are returned to
the configurator and used to bias the further search process.

The advent of automatic algorithm configuration tools has a number of benefits. A first is
that it helps to reduce the time that is usually spent in the experimental stages of algorithm de-
sign and development by allowing the determination of high-parameter configurations through
the computer instead of using the manual, human-centric effort for this task. In addition, ex-
perience has shown that usually the parameter configurations found by computer improve over
those identified by more traditional approaches [22, 28, 15, 23]. On a longer term basis, au-
tomatic algorithm configuration tools have the potential to modify the traditional way how
optimization algorithms are conceived and free human creativity for higher level design tasks
at which researchers usually excel when compared to computers. This change in the paradigm
of algorithm design and development is illustrated in Figure 2. In this sense, automatic algo-
rithm configuration, from an abstract point of view, follows other trends in sciences such as
bioinformatics, engineering and others where more and more repeatable tasks are tackled by
powerful computing methods and freeing human expert time for more high-level tasks.

2.2 Available Tools for Off-line Configuration
In recent years, various, increasingly performing automatic algorithm configuration methods
have been proposed. These methods range over different levels of sophistication for what
concerns their usability and the type of configuration tasks these methods can tackle. In the
following, we review several of these methods focusing on the ones that are so far the most
generally applicable ones for what concerns the different types of configuration tasks they can
tackle and also their practical usage in the sense of ease-of-use. In particular, our aim is to
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Figure 2: Change of paradigm in algorithm design. The human developer focuses on high-
level algorithm design and the specification of algorithmic components. The best combination
of algorithm components and other parameter settings are determined by automatic algorithm
configuration tools through the use of computational power.

include methods in the tool kit that

• can deal with (all) different types of tunable parameters that usually arise in automatic
algorithm configuration, that is, categorical, ordinal, and numerical (integer and continu-
ous) variables;

• are easy to set-up and usable off-the-shelf without requiring too much human intervention
for their adaptation to specific configuration tasks.

The three methods that we identified as the ones that best address these desirable properties,
are irace, ParamILS, and SMAC. These three methods are described next in more detail. After,
a high-level description of other methods that have some specific limitations are discussed.

2.2.1 irace

The irace package [27] is an implementation of iterated racing, of which I/F-Race [4, 10] is
a special case that uses the Friedmans non-parametric two-way analysis of variance by ranks.
Iterated racing is a method for automatic configuration that consists of three steps.

1. Sample new configurations according to a particular distribution.

2. Select the best configurations from the newly sampled ones by means of racing

3. Update the sampling distribution in order to bias the sampling towards the best configu-
rations.
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These three steps are repeated until a termination criterion is met. In iterated racing, each
configurable parameter has an independent sampling distribution, which is either a normal dis-
tribution for numerical parameters, or a discrete distribution for categorical parameters. The
update of the distributions consists of modifying the sampling distributions, the mean and stan-
dard deviation in the case of the normal distribution, or the discrete probability values of the
discrete distributions. The update biases the distributions to increase the probability of sam-
pling, in future iterations, the parameter values in the best configurations found. After new
configurations are sampled, the best configurations are selected by means of racing.

Racing was first proposed in machine learning to deal with the problem of model selection
[30]. Birattari et al. [9] adapted the procedure for the configuration of optimization algo-
rithms. A race starts with a finite set of candidate configurations. At each step of the race,
the candidate configurations are evaluated on a single instance. After each step, those candi-
date configurations that perform statistically worse than at least another one are discarded, and
the race continues with the remaining surviving configurations. This procedure continues un-
til reaching a minimum number of surviving configurations, a maximum number of instances
that have been used or a pre-defined computational budget. The computational budget may be
an overall computation time or a number of experiments, where an experiment is the run of
a specific algorithm configuration on an instance. A complete description of the iterated rac-
ing algorithm as implemented in the irace package can be found mostly in the original papers
[4, 10]. The irace package adds some additional modifications that are described in detail in
[27].

The irace package itself is freely available at http://iridia.ulb.ac.be/irace.
irace is implemented in R, a freely available, powerful statistical language, though no knowl-
edge of R is needed to use irace.

2.2.2 ParamILS

ParamILS is an iterated local search [29] algorithm for automatic configuration [26, 25]. It
assumes that all parameters are categorical, which means that numerical parameters have to
be discretized before actually applying paramILS. This may at first seem a disadvantage of
paramILS when compared to the previously discussed irace tool, but the overall high perfor-
mance of paramILS in various configuration tasks [22, 23, 25] has shown that this discretization
does not provide a major obstacle to the performance of paramILS.

ParamILS works as follows. Initially, a number of random candidate configurations are
generated. Additionally, one or few default algorithm configurations can be specified for con-
sideration as initial candidates. The best of these initial configurations is then selected as the
initial solution for the further search process. The local search algorithm in ParamILS is a
first-improvement algorithm that at each step replaces the value of one parameter by a ran-
domly chosen, different value. If the new parameter configuration improves upon the current
best configuration, it replaces it. These first-improvement steps are repeated until the algorithm
is deemed to be in a local optimum. Once paramILS stagnates, a perturbation takes place,
which is implemented by changing the values of few parameters to randomly chosen different
parameter values. The perturbation leads from the current local optimum configuration θ∗ to
another one, θ′, and the local search algorithm restarts from θ′. Once a new local minimum θ′∗

is reached, it is compared to θ∗; θ′∗ is kept as the incumbent solution, if it is better or equal to
θ∗; otherwise the search continues by applying the next perturbation to θ∗. As an additional
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diversification mechanism, paramILS also includes an occasional random restart of the search
process. In particular, with a small probability pr, after each local search paramILS is restarted
using a random initial configuration.

Different variants of paramILS are obtained by using different ways of how it is defined
when one configuration is better than another one. The mechanism used in the BasicILS vari-
ant of paramILS consists in evaluating each configuration on N problem instances. Unfortu-
nately, a good value for N depends on the particular configuration task [26] and the available
configuration budget. Therefore, another variant, FocusedILS, adaptively selects the number of
training instances to be used for evaluating configurations. Essentially, the mechanism consists
in increasing the number of training instances each time a new configuration challenges the
best configuration found so far. For a detailed explanation of this mechanism we refer to the
original paper [25].

The paramILS software is implemented in the Ruby programming language and it is avail-
able from http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/. ParamILS
is freely usable for academic purposes but for commercial purposes the developers should be
contacted concerning licensing options.

2.2.3 Sequential Model-based Algorithm Configuration (SMAC) method

The Sequential Model-based Algorithm Configuration (SMAC) method [24] is a recent con-
figuration method that makes use of a model-based search paradigm. The essential idea under-
lying such model-based strategies for algorithm configuration (respectively, optimization) is to
approximate the mapping between the parameter space (that is, the search space in case of op-
timization problems) and the performance of parameter settings (that is, the objective search)
in an explicit form through a regression model. Different methods can be used to provide
this approximation. Common choices are, for example, to use Gaussian processes or Kriging
models. This choice is done in the sequential parameter optimization (SPO) [6] and the se-
quential Kriging optimization algorithm [21], respectively. Unfortunately, tuning with SKO
and SPO approaches was so far limited to tuning real-valued parameters and tuning on single
instances only. SMAC is a configuration method that makes model-based methods applicable
to configure algorithms that involve categorical and numerical parameters and that allows a
configuration across multiple problem instances.

From a high-level perspective, model-based configuration or optimization approaches work
as follows. They iterate over two phases of (i) gathering data and (ii) fitting models in depen-
dence of the data obtained. In configuration, for each configuration θi the observed performance
c(θi) is stored and from the observed data (θi, c(θi), i = 1, . . . , K) a modelM is learned that
tries to predict the performance of a configuration. Given this model, high-quality configura-
tions are searched and for the most promising configuration, as predicted by the model, the
actual observations are generated, that is, the configurations are actually run on the training set
of instances.

SMAC implements this high-level approach as follows. The models that SMAC uses are
based on random forests [12], which can be used to model also categorical variables. From the
random forest, SMAC also obtains an uncertainty measure associated with the prediction. To
aggregate predictions across multiple instances, SMAC generates predictions for each instance
and then aggregates the predictions, for example, by averaging if the goal is to optimize aver-
age performance [24]. For the predictions, SMAC also takes into account instance features that
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may be computed from instance data. While [24] mentions that the usage of instance features
may improve performance, SMAC may be also used without instance features in case they are
not available. In the next phase, SMAC uses the model to evaluate candidate configurations and
to select the most promising ones for actual execution and direct measurement of performance.
How promising a candidate configuration is, is defined by an expected improvement criterion
that relates the average prediction and its variance. SMAC applies a local search on the surface
defined by the expected improvement criterion and generates in this way 10 locally optimal
solutions. The best configurations are selected among a set made of these 10 plus an addi-
tional 10000 randomly generated ones are then actually run on the training instances (ensuring
a minimum exploration by forcing the selection of at least one randomly generated configura-
tion). For the evaluation and the determination of the best-so-far configuration, SMAC uses an
intensification mechanism that is similar to the one employed by ParamILS. Computational re-
sults in [24] indicate that SMAC obtains better configurations than FocusedILS on a number of
benchmark configuration tasks, where the goal was minimizing the run-time for optimization
of decision algorithms.

SMAC is implemented in the Java programming language and available at http://www.
cs.ubc.ca/labs/beta/Projects/SMAC/. SMAC is freely usable for academic pur-
poses but for commercial purposes the developers should be contacted concerning licensing
options.

2.3 Other methods
There are a number of approaches that have been proposed to optimize parameter settings of
algorithms. Most of these methods have been applied to tuning numerical algorithm parameters
and only very few other approaches have been proposed to tackle general configuration tasks.

2.3.1 Gender-based Genetic Algorithm

Apart from irace, paramILS, and SMAC, the gender-based genetic algorithm proposed by
Ansetegui et al. [2] is the main other technique proposed for general configuration tasks. The
approach applies a genetic algorithm as the search mechanism in the parameter space. It uses
an encoding of the parameter space as a variable tree, which is also used to define the cross-
over operators. The evaluation of configurations is done in parallel in a way that supports the
configuration goal of minimizing algorithm run-time but cannot be directly transferred towards
optimizing solution quality. Hence, for the purposes in the COLOMBO project, where mea-
sures of solution quality need to be minimized, the current version of the gender-based genetic
algorithm configurator is not directly applicable. This is also one of the main reasons, why this
configurator was not integrated into the prototype of the tool kit.

2.3.2 REVAC

Relevance Estimation and Value Calibration (REVAC) is a tuning methods that was designed
to calibrate numerical parameters of evolutionary (but also other) algorithms and to give an
estimate of the regions of the parameter space that gives the highest performance. REVAC
has been developed in the area of evolutionary algorithms [32, 33] and is itself an estimation
of distribution algorithm. It has been extended also by racing and intensification approaches
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later [38] and to tuning across multiple problem instances [39]. However, as said above, it is a
method that was proposed for tuning numerical algorithm parameters and, thus, it was therefore
not included into the prototype configuration tool kit.

2.3.3 Continuous Optimizers

If the configuration task comprises only continuos valued parameters or integer parameters
with a relatively large domain to be set, an alternative to other parameter tuning methods is
the direct usage of continuous optimization algorithms that possibly are enhanced by methods
for handling the stochasticity in the configuration problem. One such approach has been pre-
sented by Audet and Orban [3]. They used the mesh-adaptive direct search (MADS) method
for parameter tuning of other continuous optimization algorithms. In later studies, also other
continuous optimization algorithms have been considered by Yuan et al. [41] including MADS,
BOBYQA [34], CMAES [19], and the search mechanism for numerical parameters underlying
the irace package. They identified a version of CMAES [19] extended by a proper handling
of stochasticity as a promising method for tuning continuous parameters [42]. Due to their
limited applicability to configuration tasks that only involve numerical parameters, we have not
included these methods into the current version of tool kit prototype. Depending on the further
configuration tasks that arise in the project, the latter method by Yuan et al. [42], which appears
to be the most promising one, may be included into the prototype.

2.3.4 Other Approaches

There have been few other approaches to tuning algorithm parameters by computational proce-
dures. In fact, a number of experimental design based approaches have been used for parameter
tuning. Specific methods include the response surface-type approach followed by Coy et al.
[13]. The CALIBRA approach [1] uses Taguchi fractional designs coupled with local search to
improve parameter settings. Apart from these specific methods for parameter tuning, the usage
of rather standard experimental design techniques for screening parameters and setting them
has been examined in various occasions [36, 37, 18]. In earlier papers, the level of algorithm
configurators has also been named as meta-planning or meta-optimization approaches [31, 17].
Also model-based strategies have been examined for the parameter tuning task. In particular,
the sequential parameter optimization (SPO) approach has received considerable attention [6],
which is also implemented in an R package called SPOT [7].

Despite the promise these other approaches have, most of them have either been used for
numerical parameters, or are limited in the number of parameters they may consider, or are not
readily available as tool boxes to be used essentially as black boxes inside a configuration tool
kit.
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3 Prototype of the Automatic Configuration and Tuning Tool
Kit

In this section, we describe the purpose and the usage of the tool kit and give some exemplary
results on the comparison of the three automatic configuration tools that are currently interfaced
with the prototype tool kit.

3.1 Purpose
The currently available, general automatic algorithm configuration tools usually use different
formats of how to define a configuration scenario, probably because these methods have only
recently been devised. This results in specific ways of how to define the parameters to be
configured, the settings of the configurator, and the interface to the algorithm to be configured.
Consequently, a user must spend time learning how to use each configurator, and even if she has
the proper knowledge, one must set-up the different configurators for the same configuration
scenario for each configurator in possibly different formats.

The purpose of this tool kit is to define a common interface for the user, and to take care
of the underlying details necessary to use different configurators in a transparent way. Thus, it
makes it easier to use several configurators, to compare the performance of the various config-
urators, or to simply run each of the configurators in parallel but requiring only to setup once
the configuration scenario. The latter may be useful since for a specific configuration task it is
usually not a priori known which configurator will reach the best overall results. In addition, as
mentioned, it may also ease the comparison of different configurators to better understand their
relative advantages and weaknesses on different optimization problems, a task rarely done in
the literature.

The tool kit is written in Python (version 2.7) to make the software usable across many
different platforms. A graphical overview of the structure of the tool kit is presented in Fig. 3.

3.2 Embedded algorithms
Currently, the tool kit supports the following configurators, which have been described in Sec-
tion 2.2: irace, SMAC and ParamILS. More configurators will be added in the future if they
become relevant for the project. The three configurators must be installed independently of the
tool kit. The irace software package is implemented in R a programming language for statis-
tical computing [35], the tool kit has been tested with irace version 1.3 and should be largely
backward compatible with earlier versions of irace. SMAC is implemented in Java, and we
tested version 2.02. ParamILS is implemented in Ruby, a cross-platform scripting language,
and we tested the tool kit with version 2.3.5. Future versions of these configurators should be
supported as long as their current input format does not change.

3.3 Configuration Scenario
This section describes how a user defines a configuration scenario for the tool kit. A scenario
involves the specification of the parameters to be configured, the setting of the configuration
process, and how the configurators can interact with the algorithm to be configured.
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Figure 3: Overview of the architecture of the automatic algorithm configuration tool kit.

3.3.1 Specification of Parameters

The parameters that must be configured are specified in a file using a specific syntax. The spec-
ification of a parameter includes its name, a switch, type, and the range of valid values it can
take. The name can be any string containing letters, numbers, and the two characters ’-’ and
’ ’, with a maximum length of 255 characters. Note that this is similar to naming conventions
in many different programming languages. The switch must be specified between quotes, it
can contain any ASCII character, including spaces. The switch can be used to identify com-
mand line parameters with which the algorithms whose performance is to be optimized can be
called using different parameter settings. The type of each parameter must be declared with
a single letter: ’c’ stands for categorical, ’o’ for ordinal, ’r’ for real and ’i’ for integer. The
main parameters that are accepted by configurators typically include real, integer, or categori-
cal parameters. The irace configurator goes further and also implements the concept of ordinal
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Table 1: The set of parameters that are made available to the user in the ACOTSP software
Name Command line switch Type Possible Values

algorithm -- Categorical {as, mmas, eas, ras, acs}
localsearch --localsearch Ordinal {0, 1, 2, 3}
alpha --alpha Real [0.00, 5.00]
beta --beta Real [0.00, 10.00]
rho --rho Real [0.01, 1.00]
ants --ants Integer [5, 100]
nnls --nnls Integer [5, 50]
q0 --q0 Real [0.0, 1.0]
dlb --dlb Categorical [0, 1]
rasrank --rasranks Categorical [1, 100]
elitistants --elitistants Integer [1, 750]

parameters. Ordinal parameters are discrete parameters that have the additional property that
their discrete values follow an underlying implicit order. For instance, a categorical parameter
whose possible values can be “small”, “medium” and “large” could be declared as being ordi-
nal. The tool kit allows the specification of the three basic types plus the ordinal one. However,
it converts an ordinal parameter to a categorical one for configurators that do not handle them
(currently, SMAC and ParamILS). In addition, as ParamILS expects numerical parameters to
be discretized, the tool kit also implements a default discretization for the numerical parame-
ters. This default discretization is always used if the user does not specify an explicit one. The
values are defined between parenthesis and separated by comas. Integer and real parameters
must have only two values within the parenthesis, defining the boundaries of the interval of
possible values. Categorical and ordinal ones can define any number of values. All these fields
must be separated in the text file by at least a space or a tabulation, and any additional space or
tabulation is ignored.

As an example, we focus here on the parameters of the ACOTSP software [40], presented in
Table 1. The possible values allowed for each parameters are chosen based on the semantic of
the parameters. To fully specify the parameters presented in Table 1 in the tool kit format, a user
has to provide a simple text file as follows (lines starting with the character ’#’ are ignored).

To fully specify the parameters presented in Table 1 in the tool kit format, a user has to
provide a simple text file as follows (lines starting with the character ’#’ are ignored).

# name switch type values
algorithm "--" c (as,mmas,eas,ras,acs)
localsearch "--localsearch " o (0, 1, 2, 3)
alpha "--alpha " r (0.00, 5.00)
beta "--beta " r (0.00, 10.00)
rho "--rho " r (0.01, 1.00)
ants "--ants " i (5, 100)
nnls "--nnls " i (5, 50)
q0 "--q0 " r (0.0, 1.0)
dlb "--dlb " c (0, 1)
rasrank "--rasranks " i (1, 100)

16



elitistants "--elitistants " i (1, 750)

3.3.2 Settings of the Configuration Process

Each configurator typically offers a number of possible settings, that may differ between the
configurators and therefore may not be relevant or implemented for the other. The specification
of these parameters is possible for an advanced user, and default values are assumed by the tool
kit if no specific parameter settings for the configurators are set by the user.

Some parameters are common for all configurators and are mandatory, such as the budget
in terms of algorithm evaluation that can be used for the configuration process. These config-
uration settings, optional and mandatory ones, are specified in a file as follows. Lines starting
with the character ’#’ are ignored.

# Mandatory setting
maxExperiments <- 1000

# Setting to overwrite irace default
initialCandidates <- "initial_cand.txt"

Currently only the budget (called “maxExperiments”), that is, the number of evaluations
that can be used for the algorithm configuration, is mandatory. The other settings, all the ones
made available by each configurator (we refer to their documentation for the complete list), can
be optionally specified by an advanced user.

The advantage of this approach is that a user can make use of different configurators “out
of the box”, without knowing the required specific settings for it, and can also tweak the con-
figurators setting further if he is willing to.

3.3.3 Execution Hook

Most configurators rely on the concept of hook. The hook is any piece of executable code
which the configurator calls in a standard way, and that is responsible to call the algorithm to
be configured and return the result to the configurator. In other words, it acts as an interface
between a configurator and the target algorithm.

Each configurator proposed in the literature relies on his own format to call the hook and get
the result back. The tool kit implements a transparent mechanism that allows to write one single
hook that is then handled properly by each supported configurator. In our description so far, we
have assumed that the target algorithms are called by command line parameters. However, if the
target algorithms instead use a parameter file as input to define specific parameter settings, the
execution hook would also be responsible for generating this parameter file from the specific
candidate configurations.

3.3.4 Discretization of Parameters

Some configurators do not handle integer or real valued parameters, but only categorical ones.
Among the list of currently supported configurators, this is the case for ParamILS. In this case,
parameters that are specified as a range are automatically discretized to a maximum number of
discrete values, which currently is set to 10 as the default value. Optionally, the user can define

17



in a file the different values that must be used to discretize parameters, the default being used
if the file does not exist or if a parameter is not specified in it. This optional file must contain
lines with two fields (separated by any number of space or tabulation) as follows.

<parameter_name> <number_of_values>

There is little knowledge on which proper setting to use for the number of discrete values,
and the tool kit could be used to ease computational experiments to better understand it in the
future.

3.3.5 Tool Kit Usage

The tool kit being made to ease the use of different configurators, its usage itself is simple, too.
The user must provide in a directory “myConfig”, the following files: parameters.txt
contains the definition of the parameters, executionHook is responsible for the interface
with the program to be configured, listInstances.txt lists the instances to be used for
the configuration process, tuningConf.txt is used to define the configuration settings.
Optionally, a file discretize.txt can be added to set the number of values to be used for
discretization. Note that if a required file is not provided, the tool kit will warn the user and
abort. The tool kit is then simply called in the following way:

./tuningTK create <configurator_name>

After checking that the configuration is valid, the tool kit will create a new directory “tuning-
<configurator name>”. This new directory is then fully compliant with the given configu-
rator. For instance, to use the irace configurator, after calling the tool kit with the com-
mand “./tuningTK create irace”, the user enters the newly created directory “tuning-
irace”, and then just calls the command “irace”, which launches the irace configurator on the
proper configuration. The call to the configurators is left to the user, since there are many differ-
ent ways to do it, tailored for particular usages and computing environments (use of computing
clusters, queuing systems, integration with parallel environments, etc.).

3.4 Indicative Usage of the Prototype Tool Kit for Comparing Configu-
rators

In this section, we give some preliminary results of a comparison of the three automatic algo-
rithm configuration tools, which we included into the prototype of the automatic configuration
tool kit. As the target configuration task, we have chosen here the configuration of the ACOTSP
software [40], which is a software package that implements several Ant Colony Optimization
(ACO) algorithms [14] for the traveling salesperson problem (TSP). This software package can
be seen as a black-box optimizer for the TSP that has 12 configurable parameters, including
categorical, ordinal, integer, and real-valued ones.

In all experiments we used Euclidean TSP instances with a number of nodes n ∈ {1000,
1500, 2000, 2500, 3000}, where the nodes are uniformly distributed in a square of side length
10 000. We used 1 000 instances for training and 300 for evaluating the best found candidate
configurations using the DIMACS instance generator. The experiments were carried out on
cluster computing nodes, each equipped with two AMD Opteron 6272 CPUs (2.1 GHz, 16 MB
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Figure 4: Boxplots of the average solution quality obtained on the test set for the default ver-
sions of each of the three tuners.

L2/L3 cache size) running under Cluster Rocks Linux version 6/CentOS 6.3, 64bits. Only one
CPU core was used for each run due to the sequential implementation of the ACOTSP software.
Each configurator was executed 20 independent times using a budget of 1000 experiments, that
is, 1000 runs of the ACOTSP software.

In this case study, 12 parameters of the ACOTSP software are examined. This configu-
ration task requires the setting of continuous and quasi-continuous as well as true categorical
parameters. This includes the following four continuous parameters α, β, ρ, and q0; and five
integer parameters, which are m, nn, the number of ants in rank-based Ant System, rasrank,
the number of elitist ants in elitist Ant System, eants, and the number of neighbors used in the
local search, nnls. Two ordinal variables are the local search type l (including the four levels no
local search, 2-opt, 2.5-opt, and 3-opt); and the usage of don’t look bits, dlb (binary parameter,
on and off). Additionally, one categorical parameter is considered for the configuration task.
This parameter is the ACO variant that is to be chosen, including the levels max-min ant system
MMAS, ant colony system (ACS), rank-based ant system (RAS), elitist ant system (EAS), ant
system (AS). These parameters engender the following subsidiary relations: dlb and nnls are
used only when local search is on; q0 is used only when ACS is selected; rasrank is used only
when RAS is selected; and eants is used only when EAS is selected.

In Figure 4 is given a box-plot of the average solution quality obtained on the test set for the
default versions of each of the three configurators.4 Given that there were 20 runs of each con-
figurator, the box-plots indicate the distribution of 20 averages. From the boxplot, paramILS
appears to be the best performing one as indicated by the lowest median. In fact, statistical
tests can be used to examine the statistical significance of the observed differences. Applying
the Wilcoxon rank-sum test for each of the pairwise comparisons of the three configurator’s
performance and using Bonferroni corrections for multiple testing, shows that in this particu-
lar setting paramILS performs statistically significantly better than irace and both, paramILS
and irace perform statistically significantly better than SMAC. Figure 5 further illustrates the

4Only for SMAC we changed slightly the default configuration by switching of the log-transformation of the
search cost, which is probably more useful for minimizing computation time.

19



0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

irace

0.4

0.5

0.6

0.7

0.8

s
m

a
c

0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

irace

0.3

0.4

0.5

0.6

0.7

p
a
ra

m
ils

Figure 5: Correlation plots for pairwise comparison of the average solution cost measures by
the percentage deviation from the known optimal solutions obtained by the configurators on
each of the test instances (averaged across the 20 runs of each configurator). A point on top
of the diagonal indicates better performance for the configurator given on the x-axis, while a
point below the diagonal indicates better performance for the configurator given on the y-axis.

results on the test set of instances through correlation plots for the pairwise comparison of
the configurators on each of the test instances. For example, these plots indicate that even if
irace configurations reach on more instances an average solution cost better than those of the
paramILS configurations, the overall slightly worse performance of irace configurations is due
to relatively poor results on some other instances.

4 Summary
Automatic configuration has attracted significant research and development efforts in the recent
years, and several automatic configuration approaches have been proposed in the literature.
Consequently, an algorithm designer who wants to make use of automatic configuration is left
with several existing configurators, each of them requiring expertise and a different setup to be
used. In Section 2, we reviewed different configurators that are available and we explained why
some of them are more relevant than others from an end-user point of view. The configurators
retained for inclusion in the tool kit, presented in Section 3, are irace [27], ParamILS [26] and
SMAC [24]. The tool kit is currently a prototype, and more configurators could be added in the
future if they become relevant within the COLOMBO project.

The use of the tool kit throughout the project will be mainly from an algorithm designer
point of view, that is, with the aim of designing algorithms for optimizing traffic lights be-
havior that are as efficient as possible. However, the tool kit offers also an advantage that is
more general and research-oriented: it allows to compare different configurators more easily,
a task only partially done so far in the literature. We demonstrated this aspect in Section 3.4
by giving preliminary results obtained from the comparison of different configurators for one
optimization problem.

In the future, we plan to extend the tool kit in different ways. The choice of these extensions
will mainly depend on their relevance to the COLOMBO project. We may include additional,
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new configurators that appear relevant from a results quality perspective. We also plan to extend
it with additional functionalities such as supporting the installation of the different configurators
that are handled (this is currently left to the user). From an exploitation point of view, we will
focus on using the tool kit for configuration tasks arising in the COLOMBO project.
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[40] Thomas Stützle. ACOTSP: A software package of various ant colony optimization algo-
rithms applied to the symmetric traveling salesman problem, 2002.

[41] Zhi Yuan, Marco A. Montes de Oca, Thomas Stützle, and Mauro Birattari. Continuous
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